Research Analysis

MICHAEL BERNSTEIN
CS 376
Last time

- What is a statistical test?
- Chi-square
- t-test
- Paired t-test
Today

- ANOVA
- Posthoc tests
- Two-way ANOVA
- Repeated measures ANOVA
Recall: hypothesis testing
Anatomy of a statistical test

- If your change had no effect, what would the world look like?
 - No difference in means
 - No slope in relationship

- This is known as the null hypothesis
Anatomy of a statistical test

・Given the difference you observed, how likely is it to have occurred by chance?

Probability of seeing a mean difference at least this large, by chance, is 0.012

Probability of seeing a slope at least this large, by chance, is 0.012
Errors

Difference detected?

<table>
<thead>
<tr>
<th>Difference exists?</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>True positive</td>
<td>Type 1 error publish false findings</td>
</tr>
<tr>
<td>N</td>
<td>Type 2 error get more data?</td>
<td>True negative</td>
</tr>
</tbody>
</table>
Errors

Type I error (false positive)

You’re pregnant

Type II error (false negative)

You’re not pregnant
p-value

- The probability of seeing the observed difference by chance
 - In other words, P(Type I error)
- Typically accepted levels: 0.05, 0.01, 0.001
t-test: compare two means

- “Do people fix more bugs with our IDE bug suggestion callouts?”
ANOVA: compare N means

• “Do people fix more bugs with our IDE bug suggestion callouts, with warnings, or with nothing?”
Rough intuition for ANOVA test

How much of the total variation can be accounted for by looking at the means of each condition?

- Total deviation from grand mean
- Deviation of factor mean from grand mean
- Deviation of response from factor mean
ANalysis Of VAriance (ANOVA)

- Degrees of freedom: how many values can vary? (Using n and r)

 Degrees of freedom in individual data points: n - 1
 Degrees of freedom in factor level averages: r - 1
 Combined: n - r
Finally: run the test!

- How large is the value we constructed from the F distribution?
- Test if

\[F^* > F(1 - \alpha; r - 1, n - r) \]

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>2</td>
<td>22.75</td>
<td>11.38</td>
<td>12.1</td>
<td>0.00032***</td>
</tr>
<tr>
<td>Residuals</td>
<td>21</td>
<td>19.75</td>
<td>0.94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 factor levels hopefully \(F(2,21) \) \(p < .001 \)
24 observations top >> bottom
Reporting an ANOVA

• “A one-way ANOVA revealed a significant difference in the effect of news feed source on number of likes (F(2, 21)=12.1, p<.001).”

```r
> aov <- aov(value ~ group, data)
> summary(aov)

                  Df Sum Sq Mean Sq F value Pr(>F)
group             2 22.750  11.375 12.066 0.00032 ***
Residuals         21 19.750   0.940

```
Posthoc tests
ANOVA! Are we done no

- Significant means “One of the μ_i are different.”
- That’s not very helpful: “There is some difference between populating the Facebook news feed with friends vs. strangers vs. only Michael’s status updates”
Estimating pairwise differences

- Which pairs of factor levels are different from each other?
Roughly: we do pairwise t-tests
But...familywise error!

- \(\alpha = 0.05 \) implies a 0.95 probability of being correct
- If we do \(m \) tests, the actual probability of being correct is now:
 \[\alpha^m = 0.95 \cdot 0.95 \cdot 0.95 \cdot \ldots \]
 \[< 0.95 \]
Bonferroni correction

- Avoid familywise error by adjusting α to be more conservative
- Divide α by the number of comparisons you make
 - 4 tests at $\alpha = .05$ implies using $\alpha = .0125$
- Conservative but accurate method of compensating for multiple tests
Bonferroni correction

```r
> pairwise.t.test(value, group, p.adj='bonferroni')

   Pairwise comparisons using t tests with pooled SD
data:  value and group

    A     B
B 0.02971 -
C 0.00023 0.15530

P value adjustment method: bonferroni
```
Tukey test

- Less conservative than Bonferroni
- Compares all pairs of factor level means

```r
> TukeyHSD(aov)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = value ~ group, data = data)

$group

<table>
<thead>
<tr>
<th>diff</th>
<th>lwr</th>
<th>upr</th>
<th>p adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-A</td>
<td>1.375</td>
<td>0.1527988</td>
<td>2.597201</td>
</tr>
<tr>
<td>C-A</td>
<td>2.375</td>
<td>1.1527988</td>
<td>3.597201</td>
</tr>
<tr>
<td>C-B</td>
<td>1.000</td>
<td>-0.2222012</td>
<td>2.222201</td>
</tr>
</tbody>
</table>
```
Reporting

• “Posthoc tests using Bonferroni correction revealed that friend feed and Michael feed were significantly better than a stranger feed ($p<.05$), but the two were not significantly different from each other ($p=.32$).”
Two-way ANOVA
Crossed study designs

- Suppose you wanted to measure the impact of two factors on total likes on Facebook:
 - Strong ties vs. weak ties in your news feed
 - Presence of a reminder of the last time you liked each friend’s content (e.g., “You last liked a story from John Hennessy in January”)
- This is a 2 x 2 study: two factor levels for each factor {tie strength, reminder}
Interaction effects

- Sometimes the basic model doesn’t capture subtle interactions between factors
 - Data: People who see strong ties and have a reminder are especially active
 - Result: Grand mean 8, strong tie mean 11, reminder mean 7, but mean in this cell is 20
Two-factor ANOVA test

• Test for main effects and interaction

> anova(lm(time ~ device * technique))

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>device</td>
<td>1</td>
<td>981.0</td>
<td>981.02</td>
<td>94.5291</td>
<td>2.58e-12 ***</td>
</tr>
<tr>
<td>technique</td>
<td>2</td>
<td>3423.8</td>
<td>1711.90</td>
<td>164.9547</td>
<td>< 2.2e-16 ***</td>
</tr>
<tr>
<td>device:technique</td>
<td>2</td>
<td>75.3</td>
<td>37.65</td>
<td>3.6275</td>
<td>0.03522 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>42</td>
<td>435.9</td>
<td>10.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

factor or interaction SS MS F p

• Main effects are significant, but interaction effect is also significant
Significant interaction?

- Significant interactions mean that you can’t just report the main effects — the story is more complicated
- Inspect to figure it out:

<table>
<thead>
<tr>
<th>Technique</th>
<th>Pen</th>
<th>Touch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique A</td>
<td>15.3</td>
<td>21.1</td>
</tr>
<tr>
<td>Technique B</td>
<td>23.9</td>
<td>33.1</td>
</tr>
<tr>
<td>Technique C</td>
<td>32.9</td>
<td>44.9</td>
</tr>
</tbody>
</table>

The slower techniques (B, C) harm Touch more than Pen.
Repeated measures ANOVA
Within-subjects studies

- Control for individual variation using the mean response for each participant
- Before: we found the mean effect of each treatment
- Now: we find the mean effect of each participant
Repeated measures in R

repeated measures
error term

effect of subtracting out the participant means

remaining main effects

```
> aov <- aov(value ~ factor(group) +
+ Error(factor(participant)/factor(group)), repeatframe)
> summary(aov)

Error: factor(participant)
     Df  Sum Sq Mean Sq F value  Pr(>F)
Residuals 7  5.167   0.7381

Error: factor(participant):factor(group)
     Df  Sum Sq Mean Sq    F value  Pr(>F)
factor(group) 2 22.750  11.3750  10.920000  0.00139 **
Residuals 14 14.583   1.0423
```
All together now
Always follow every step!

1. Visualize the data
2. Compute descriptive statistics (e.g., mean)
3. Remove outliers >2 standard deviations from the mean
4. Check for heteroskedasticity and non-normal data
 • Try log, square root, or reciprocal transform
 • ANOVA is robust against non-normal data, but not against heteroskedasticity
5. Run statistical test
6. Run any posthoc tests if necessary