Design Tools

CS 347
Michael Bernstein
Announcements

Quiz 2 is a week from today—covers four lectures

- Design Cognition
- Design Process
- Design Tools (today)
- Social Media (Tuesday)
Last time

The design process is a set of structured activities meant to address problems in how we generate and develop ideas.

These activities are well attuned to solving *wicked problems*, which feature contradictory or conflicting goals.

Participatory design is a movement to decenter the designer’s power in these activities. We still struggle to achieve our goals here.

Design patterns help us avoid reinventing the wheel.

We can intervene on these activities to address shortcomings in how we practice design: e.g., *parallel prototyping* and *comparing multiple designs*.
Today

Schön’s reflective practitioner

Empowering design reflection through tools and technology

Ideation: low-fidelity input

Implementation: rapid construction

Evaluation: feedback

…with examples of each
The Reflective Practitioner
Reflective practitioner

How does design work? Why does it work?

Donald Schön [1984] studied a variety of professionals, including designers, and articulated a theory of the how and the why that has remained influential.
Reflective practitioner

Design is not a “plan, then do” praxis.
Instead, the designer is engaged in an ongoing conversation with the design.
Critically, it’s only by observing the result of the doing can the designer engage in reflection, allowing them to improve.
We operate in a loop with the world: trying an idea enables us to reflect on that idea and improve it.

We learned something that we couldn’t have without testing it in the real world. Schön calls this reflection-in-action.
Implication

To improve the process:
encourage more rapid reflection, or improve the quality of the reflection

To improve the tools:
create alternatives that make reflection easier to do or more informative
The tighter we can tune this loop...
Design -> Implement -> Evaluate
...the more reflection we are doing, and the better our designs are.
Design tools improve reflection-in-action.

To create a design tool, look for a part of the reflection loop that feels loose—where reflection is slow or difficult—and tighten that part of the loop.
Design tools should...

[Hartmann 2009]

Decrease UI construction time

Isolate designers from implementation details

Enable designers to explore an interface technology previously reserved to engineers or other technology experts
Design

Implement

Evaluate

Implement

Evaluate
Goal of early-stage design tools: low-fidelity sketching

One major open loop in the design phase is the translation of an idea from the designer’s head out into a sketch: the most rapid externalized representation possible.
Enable rapid sketching

And keep the output sketchy + uncommitted.

Here, the designer uses the system to sketch a 3D shape to convey their idea [Igarashi, Matsuoka, and Tanaka 2006]
Computational sketches

Imbue the sketch with computational properties.

The designer sketches while the system helps visualize potential physical constraints [Kazi 2017]
Low-fidelity prototypes

[Landay and Myers 1996]

Sketch recognition of UI components

Led to many projects on low fidelity prototyping of UIs
Goal of prototyping tools: decrease construction time

If we can realize our idea or sketch into a prototype faster, then we can get to a reflection stage faster
$1 gesture recognizer

[Wobbrock, Wilson, and Li 2007]

Training an end-to-end ML system for gesture recognition would take thousands of examples and a lot of time—infeasible for prototyping.

The “$1 recognizer”: quick 100 lines of code for 97% accuracy with only one example.

Resample, rescale, rotate, and template match.
Rapid, simple controls

[Beginner’s Mind Collective and Shaw 2012]

All you need is alligator clips

Can’t do complex interaction with it, but lets you get off the ground quickly
Arduino

Maker board for artists, programmers and hobbyists
Prototyping physical computing

[Hartmann et al. 2006]

Plug-and-play hardware and visual statechart authoring
Replacing electronics with cameras [Savage et al. 2013]

3D print your envisioned device, then screw a camera into the back of it and use computer vision instead of electronics.
Prototyping touch-sensitive UIs

[Savage et al. 2012]

Make touch-sensitive physical devices in minutes

Create the UI layout, and software takes it from there
Design with new materials

[Albaugh, Hudson, and Yao 2019]

Knitting and soft materials are complex for non-experts: can we lower the threshold?
Goal of comparison tools: facilitate exploration

If we can generate many alternatives quickly, we can more rapidly explore a design space.
Design galleries

[Marks et al. 1997]

Automatically generate perceptually-varying alternatives within a design space

Helps the designer explore other feasible approaches

Now a widely-adopted technique inside of design tools
Explore alternatives
[Hartmann et al. 2009]

Tighten the loop by allowing exploration of design spaces and alternatives on a live version of the application.
Explore alternatives

Inventing on Principle
[Victor 2012]
What would a designer say?

[O'Donovan, Agarwala, and Hertzmann CHI ’15]
Suggesting alternatives

Explore parametrized design spaces by observing the designer’s explorations thus far.

[Koyama and Goto 2022]

Procedural Modeling
AI-driven visual feedback
[Bylinskii et al. 2017]
Summary

Schön’s reflective practitioner: designers think in cycles of action and then reflection

So, to make the designer better, enable more reflection and better reflection

Design tools aid and accelerate reflection in action:

Early stage design: convey my idea onto the page or screen
Prototyping: realize my idea into a functional prototype
Comparison: aid exploration and comparison of alternatives
Evaluation: provide better or more rapid feedback
References

References

Schön, Donald A. The reflective practitioner: How professionals think in action. 1968.
