Design Cognition
Announcements

If you’re a late add, make sure you’re in a section

You will get pinged by Chris Piech’s high frequency course feedback system. We will read and react based on the feedback.

Discussants: turn in metacommentaries before lecture (not before section)

Quiz after lecture today — pencils!
Ubicomp seeks to embed itself in long-lived activities and goals.

It does this across a number of domains, including: physical health, mental health and wellbeing, aging, and designing for neurodivergent populations.

To achieve these goals, it often seeks to sense information about the user and their surroundings in noninvasive ways.

Commodity sensing: hardware we have or might have soon, typically kept by a single user.

Infrastructure-mediated sensing: single-point sensors that connect to existing infrastructure rather than held by the user.
Ubiquitous computing

Unit 1

ubiquitous and tangible computing
input and output
activity, health, and behavior
Design

Unit 2

design cognition
design process
design tools
Design

Evaluate

Implement
Design is not a static process.
It can be studied, supported, and improved.
How might we facilitate and empower this process?
Brainstorming process
Early-stage design tools

Design

Evaluate
Study strategies
Cognitive modeling

Implement
Programming tools
WYSIWYG design tools
Rapid prototyping tools
Goal of the design unit

Refocus from the process of design to the principles that guide that process

Shift from obsequious adherence to a single prescriptive design process to an understanding of what each part of the process is trying to achieve

Result: apply the right processes at the right time, and develop entirely new process innovations
Design cognition: how our thinking shapes our design process, and how our thinking shapes others’ reactions to our designs

Four major themes of design cognition:

- Design Fixation
- Analogical transfer
- Gulfs of execution and evaluation
- Demand characteristics

Processes directly impacting the designer
Processes indirectly impacting the designer through their effect on the user
Design Fixation
Ideal: open-minded ideation

The goal is that the ideation process identifies many ideas, both proximal and distal.
Reality: not enough breadth

In practice, we often myopically stay near proximal concepts that we’ve used before or that are surface-level similar

Why?

Problem

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

“I always liked this one anyway”
Design fixation

It cognitive psychology, fixation is when we introduce self-imposed barriers to problem solving [Maier 1931, Luchins 1942]

Design fixation is when we limit the breadth of our design process through adherence to a small set of concepts [Jansson and Smith 1991]

Design fixation takes hold both (1) unconsciously, when we’re not aware, and also (2) consciously, even when we’re aware that we’re doing it.
Classic example of fixation

[Duncker and Lees 1945]

Goal: attach a candle to a wall so that the candle won’t drip on the floor. You can only use (1) a book of matches, (2) a box of thumbtacks.

Designers are trained to question assumptions, and to creatively recombine the tools at their disposal.

However, we are biased toward using objects only in the ways we’ve seen them used before.
Classic example of fixation 2

[Luchins 1942]

Goal: measure a specific amount of water with the jars

Method: participants were given practice tasks that could be solved via a nontrivial algorithm B-A-2C

The test problem could be solved via the nontrivial algorithm (B-A-2C) but also very simply (A+C). 70% still used the nontrivial algorithm.

The additional practice should have made us better. But, due to fixation on the approach we knew about, it made us worse.
Even worse, we fall in love with our own ideas

The IKEA Effect [Norton, Mochon, Ariely 2012]: we place high value on things that we helped create.

Experiment: One group of people build a piece of IKEA furniture, the control group get it pre-assembled. Both are asked how much they’d pay for the furniture. Those who assembled their own box were willing to pay a 63% premium over those who received the same furniture pre-assembled.

Ideally, showing other peoples’ ideas should positively influence our ideation. Instead, we tend to ignore others’ ideas—unless the person who came up with them joins our design team. [Choi and Thompson 2005]
The harms of design fixation

Fixation anchors us in a small subset of the design space, preventing us from identifying the best solution.

Knowing that it’s happening doesn’t help us escape it.

What does help us escape it? Well...
Analogical transfer
Where do good ideas come from?

It’s often easy to translate a solution from one problem to another problem if the **surface features** of the problems are similar.

| Worked-out textbook solution | Test problem following the exact same format |

But, major innovations are not such simple copy-pastes. They require mapping **deep features** between problems.

<table>
<thead>
<tr>
<th>Fitting a solar array in 1/10th the size for takeoff</th>
<th>Origami</th>
<th>How do bacteria mutate?</th>
<th>Slot machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Zirbel et al. 2013]</td>
<td></td>
<td>[Murray 2016]</td>
<td></td>
</tr>
</tbody>
</table>
Analogical transfer

Transfer across these deep structures is referred to as analogous transfer, as in transfer via analogy.

How? We abstract problems and solutions we’ve encountered into schemas that drop out surface features and facilitate comparison.
Problem: VR experiences are annoying to navigate and manipulate. How can we make VR better?

Surface feature transfer (boo): create novel interactions for VR

Deep feature, schema-based transfer (yay):

Social computing article: “Beyond Being There” [Hollan and Stornetta 1992] says to create collaborative experiences better than “being there”

Schema: Problem = adherence to reality is unsatisfying
Solution = stop trying to be realistic
Result: “Beyond Being Real” [Abtahi et al. 2022], create VR experiences that break from realistic self-representation
For analogical structure mapping to work, it requires that we create the correct schemas and retrieve based on those schemas.

Unfortunately, we are biased against deep structural comparisons due to fixation: we tend to focus on surface features.

Study: When learning probability, participants were asked to recall earlier problems that were relevant. 80% of the recalled problems were based on surface similarities (e.g., both about shopping lists) rather than the probability theory principles. [Ross 1984]
Without scaffolding, people don’t identify deep features

Study: participants learning negotiation strategies

“Read these one at a time” vs “Compare these examples”

Measure: % of participants who correctly transfer the negotiation principle in the examples to a test case
Implications for design

Bad ideas are often a result of poor analogical transfer: applying surface features rather than deep features in retrieving relevant ideas.

On the other hand, this raises opportunities: we can develop AI and crowdsourcing techniques to extract schemas at scale from existing ideas and aid application to new problems [Kittur et al. 2019]
Gulfs of Evaluation and Execution
Goal: a cognitive account of why a design is poor

When people “don’t get it”, what’s actually happening?
What we’re trying to avoid: “It just feels natural”
Gulfs between the person and the system

[Hutchins, Hollan and Norman 1985]

How many cognitive resources do I need to devote in order to translate from me to the system?

Gulf of evaluation
“What is it telling me?”

Gulf of execution
“How do I tell it?”
Always know which gap you’re dealing with

If someone has to sit and figure out how to parse the symbols the system is presenting: **gulf of evaluation** (a syntactic distance)

If someone can figure out what the symbols mean, but can’t figure out what they’re conveying: **also a gulf of evaluation** (but this time a semantic distance)
Always know which gap you’re dealing with

If a nontechnical expert knows which machine learning model they want to create but have to build it out of raw tensors

gulf of execution (a semantic distance)

If that nontechnical expert has the right idea of what to command the system to do, but the function call is complicated

also a gulf of execution (but this time an articulatory distance)
Direct manipulation

[Hutchins, Hollan and Norman 1985]

Modern GUIs often adopt a metaphor of acting directly on the object of interest: **direct manipulation**. This reduces the gulfs.

Rather than interpreting code output, the object itself has changed. Rather than scripts and code input, we act directly on the object.

So, rather than aiming for “natural” interfaces, we should ask: **which gap is this interface closing, and how?**
Gaps in practice

1. **Gestural interaction**: the gulf of execution may remain wide, because either the semantic distance is large (Which gesture am I supposed to use again?), or the articulatory distance is large (It’s hard to get the gesture recognized.)

2. **AI+HCI tools**: even if end-user tools reduce the gulf of execution, they may not reduce the gulf of evaluation (How do I interpret the AI errors?) or the next gulf of execution (How do I tweak the model?)

3. **For professionals, expert UIs may have smaller gaps than GUIs!**
Demand characteristics
Why do bad ideas get launched?

OK, sometimes we got the feedback but just weren't listening. But sometimes, the way we tried to gather the feedback triggers psychological processes that skew what we learn.
Demand characteristics

[Dell et al. 2012]

Response bias due to signals in a study that indicate what the researcher is hoping to see: activating status differences

2.5x more preferred amongst low-status participants

5x more preferred amongst low-status participants
Demand characteristics

[Dell et al. 2012]

The effect was so strong that with a foreign researcher and low-status participants, half of them preferred the researcher’s lower quality video over the alternative higher-quality video.
Summary

Cognitive accounts can explain many challenges we face in design:

Design fixation: unnecessarily focusing on a subset of the design space

Demand characteristics: influences that drive study participants to behave in ways that make our system look good

They can also help us be precise about how to improve design:

Gulfs of execution & evaluation: what needs to be reduced?

Analogical transfer: what do we see as related inspiration?
References

Buxton, Bill. Sketching user experiences: getting the design right and the right design. Morgan kaufmann, 2010.

Gentner, Dedre, Jeffrey Loewenstein, and Leigh Thompson. "Learning and transfer: A general role for analogical encoding." Journal of educational psychology 95.2 (2003): 393

References

