CSCW & Social Software

Scott Klemmer, Bill Verplank
TA: Kevin Collins, Nundu JanakiRam

6 March 2007

http://cs247.stanford.edu
Today: Meet together

1:15 – 1:20 Announcements / questions
1:20 – 1:30 P4 Questions and Discussion
1:30– 2:00 CSCW & Social Software
2:00 – 2:05 Split into Sections
2:05 – 3:05 Idealog feedback
the study of how people work together using computer technology
Groupware

- *Groupware* denotes the technology that people use to work together
 - “systems that support groups of people engaged in a common task (or goal) and that provide an interface to a shared environment.”
- *CSCW* studies the use groupware
 - “CSCW is the study of the tools and techniques of groupware as well as their psychological, social, and organizational effects.”
<table>
<thead>
<tr>
<th>synchronous</th>
<th>collocated</th>
<th>distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
collocated

synchronous

asynchronous

distributed

courtesy of marc rettig
collocated

synchronous

asynchronous

distributed
collocated
distributed

synchronous
asynchronous

synchronous
asynchronous
collocated

synchronous

asynchronous

distributed

synchronous

asynchronous
collocated
distributed

synchronous
asynchronous
collocated
distributed

synchronous

asynchronous

reading response

Second Break Time

Good Points

- I thought the point this article brought an important point almost not looking to electronic media as trying to make it easier as much as possible face to face needs, but rather looking at what this type of communication can bring that may solve problems lacking in face to face conversation.

- I also liked their analysis of email being the most successful form of groupware, as evidenced by the fact that people choose to use it even when face to face interaction is available.

- They claim that electronic media such as video conferencing that tries to make it easier to face interaction, even when no information is clear as face to face communication will be far inferior. There do not know until we try it?

- In their discussion of Social interaction discussion, by having people post messages at different times and then show them all in one batch, I think they ignore the benefits of face to face interaction - socially monitoring conversation as it can flow in some direction. I find that a problem is in actual conversations, when one person is responding to an old point, while another moved on. It seems to make communication more difficult.
collocated

synchronous

asynchronous

distributed

synchronous

asynchronous

reading response 2

Good Points

I thought the point this article brought up was important about not missing the benefits of face-to-face interaction, even when the information is transferred via other means. I agree that in some situations, face-to-face communication will be superior. How do we know until we try it?

Critiques

- They claim that electronic media such as videoconferencing that require face-to-face interaction are not as effective as face-to-face communication. However, I believe that some aspects of face-to-face interaction are not fully captured by electronic media.
<table>
<thead>
<tr>
<th>Collocated</th>
<th>Distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td></td>
</tr>
<tr>
<td>board games</td>
<td>networked games</td>
</tr>
<tr>
<td>physical photo sharing</td>
<td></td>
</tr>
<tr>
<td>Asynchronous</td>
<td></td>
</tr>
<tr>
<td>project walls</td>
<td>digital photo sharing</td>
</tr>
<tr>
<td>in/out board</td>
<td>MS Word Collaboration</td>
</tr>
<tr>
<td>scavenger hunts</td>
<td>voting</td>
</tr>
<tr>
<td>meeting room schedules</td>
<td>Groupware calendars</td>
</tr>
</tbody>
</table>
Workflow

- Documents carry meta-data that describes their flow through the organization:
 - Document X should be completed by Jill by 4/15
 - Doc X should then be reviewed by Amit by 4/22
 - Doc X should then be approved by Ziwei by 4/29
 - Doc X should finally be received by Don by 5/4

- The document “knows” its route. With the aid of the system, it will send reminders to its users.
Knowledge repositories

- AnswerGarden (Ackerman): database of commonly-asked questions that grows automatically.

- User poses question as a text query:
 - System responds with matches from the database.
 - If user isn’t satisfied, system attempts to route query to an expert on the topic.
 - Expert receives query, answers it, adds answer to the database.
Extending email

- There is a lot of research on “email++”
 - Automatic organization
 - Task management
 - Other functions: contacts, reminders

- Multimedia email: Can include sound, video, images.
 - Only occasionally useful
 - May be important for developing economies.
Extensible Groupware: Lotus Notes

- Notes is a product that combines standard office software (email, calendar, contacts etc.) with a scriptable database backend.

- Easy to create new apps: PERT charts, novel workflow, custom shared authoring…

- “most successful groupware system to date”
Synchronous Groupware

- Desktop Conferencing (MS Netmeeting)
- Electronic Meeting Rooms (Access Grid)
- Media Spaces (Xerox PARC)
- Instant Messaging
Video

- Eye contact problems:
 - Offset from camera to screen
 - “Mona Lisa” effect

- Gesture has similar problems: trying pointing at something across a video link.
Sound

- Good for one-on-one communication

- Bad for meetings. Spatial localization is normally lost. Add to network delays and meeting regulation is very hard.
Turn-taking, back-channeling

- In a face-to-face meeting, people do a lot of self-management.
- Preparing to speak: lean forward, clear throat, shuffle paper.
- Unfortunately, these are subtle gestures which don’t pass well through today’s technology.
- Network delays make things much worse.
Social Issues

- Can these technologies replace human-human interaction?
 - can you send a “handshake” or a “hug”
 - how does intimacy survive?
- Are too many social cues lost?
 - facial expressions and body language for enthusiasm, disinterest, anger
 - will new cues develop? e.g., :)

Usage issues

• Our model of tele-communication is episodic, and derives from the economics of the telephone.

• Communication in the real world has both structured and unplanned episodes. Meeting by the Xerox machine.

• Also, much face-to-face communication is really side-by-side, with some artifact as the focus.
Solutions

- Sharing experiences is very important for mutual understanding in team work (attribution theory).

- So context-based displays (portholes) work well.

- Video shows rooms and hallways, not just people or seats.
Synchronous Implementation Issues

- \geq Two users working on same data, at the same time, in cooperation
- Extend Model View Controller (MVC)
 - views & copies of the model are distributed
- Propagate command history
 - must resolve conflicts among N histories
 - at what level are commands?
 - mouse position not good enough (e.g., different font sizes, etc.)
Face-to-Face: the ultimate?

- Kiesler and Sproull findings:
 - Participants talk more freely in email (than F2F).
 - Participation is more equal in email.
 - More proposals for action via email.
 - Reduced effects of status/physical appearance.
- But
 - Longer decision times in email.
 - More extreme remarks and flaming in email.
Cameron’s profile

Cameron W.

If you were logged in, you could add this person as your friend!

Cameron says: “I’m 24, I love SF and spending time with friends. That’s why I’m here. I want to find out what all YOU people are up to...”

Cameron’s scene (a random sampling)

:: House of Shields
:: 850 Cigar Bar
:: The Fillmore
:: Pabst’s SF
:: gallery lounge
:: Coffee to the People
:: Hemiopx Tavern
:: Persian Aub Zam Zam
:: Annie’s Social Club
:: 111 Minna

Cameron’s recent comments

Cameron on Ritual Roaster: (02.06.2006)
Great coffee. Total web 2.0 scene.

Cameron on The Buzz Bin: (02.06.2006)
Sweetest rooftop ever!

Cameron on Pork Store Cafe Valencia: (12.17.2005)
Super tasty chorizo with fried eggs. A must if you crave a greasy breakfast.
Hola klemmer!

- You have 5 new messages.
- Create yourself a buddy icon!

Printing? Can it be true?

Well, it's true if you're in the U.S.... with more countries coming online soon! Get 10 free prints with your first order! Click here to set yourself up for printing.

Flickr News

09 Feb 06 - Ladies and gentlemen, you'll notice a brand, spanking new link down in the footer. It's the Flickr Community Guidelines (applause, please).... read more news

» Flickr Blog Great photos & latest news, daily!

Do more with your photos!

Now there's even more you can do with your photos:

- PhotoShow DVD's
- Goop Calendars, Posters & Books
- Zazzle: U.S. postage stamps with your photos
- Englaze back-up DVDs and Slideshows

Make your photos happy -- do something with them! And don't forget to set your printing preferences so we can let you know when regular prints are available in your area.

Having a wedding, reunion or event?
Graphical user interface

From Wikipedia, the free encyclopedia

Redirected from GUI

For other uses, see GUI (disambiguation).

A graphical user interface (or GUI, sometimes pronounced "gooey") is a method of interacting with a computer through a metaphor of direct manipulation of graphical images and widgets in addition to text.

GUIs display visual elements such as icons, windows and other gadgets. The precursor to GUIs was invented by researchers at the Stanford Research Institute (led by Doug Engelbart) with the development and use of text-based hyperlinks manipulated with a mouse for the On-Line System. The concept of hyperlinks was further refined and extended to graphics by researchers at Xerox PARC, who went beyond text-based hyperlinks and used GUIs as the primary interface for the Xerox Alto computer. Most modern general-purpose GUIs are derived from this system. For this reason some people call this class of interface a PARC User Interface (PUI) (note that PUI is also an acronym for perceptual user interface). The PUI consists of graphical widgets (often provided by widget toolkit libraries) such as windows, menus, radio buttons, check boxes and icons, and employs a pointing device (such as a mouse, trackball or touchscreen) in addition to a keyboard. Those aspects of PUIs can be emphasized by using the alternative acronym WVIMP, which stands for Windows, Icons, Menus and Pointing device.

The GUI familiar to most of us today is either the Mac or the Windows operating systems and their applications originated at the Xerox Palo Alto Research Laboratory in the late 1970s. Apple used it in their first Macintosh computers. Later, Microsoft reused many of Apple's ideas in their first version of the Windows operating system for IBM-compatible PCs.

Examples of systems that support GUIs are Mac OS, Microsoft Windows, NEXTSTEP and the X Window System. The latter is extended with toolkits such as Motif (CDE), Qt (KDE) and GTK+ (GNOME).

Contents [hide]

1 Types of GUIs
2 GUI vs. UI
3 3D user interfaces
4 See also
5 External links

Types of GUIs

GUIs that are not PUIs are most notably found in computer games, and advanced GUIs based on virtual reality are now frequently found in research. Many research groups in North America and Europe are currently working on the Zooming User Interface, or ZUI, which is a logical advancement on the GUI, blending some 3D movement with 2D or "2 and a half D" vectorial objects.

Some GUIs are designed for the rigorous requirements of vertical markets. These are known as "application specific GUIs." One example of such an application specific GUI is the now familiar touchscreen point of sale software found in restaurants worldwide and being introduced into self-service retail checkout systems. First pioneered by Gene Misher on the Atari ST computer in 1986, the application specific touchscreen GUI has spearheaded a worldwide revolution in the use of computers throughout the food and beverage industry and in general.
Idealog review