Intro: Design and Creation

MICHAEL BERNSTEIN
CS 376
Announcements

- Readings: the magic of Stanford’s EZProxy

- Project Brainstorm Round 2 due Friday
 - Find a team!
 - Mixer at 5pm today

- Feedback on Round 1 coming soon
Round 1 feedback

- Research is a different mode of thinking than typical design projects

- For this assignment, we’re sharing warnings rather than grading harshly. (That’s by design!) Now that you’re learning this, we’ll be more stringent with Round 2.

- To Rob!
Design and creation are not static processes.

They can be studied, supported and improved.
How might we facilitate and empower this process?
Design
Brainstorming process
Early-stage design tools

Evaluate
Study strategies
Cognitive modeling

Implement
Programming tools
WYSIWYG design tools
Rapid prototyping tools
“Enlightened trial and error outperforms the planning of flawless intellect.”

- David Kelley
Threshold/Ceiling Tradeoff

[Myers, Hudson and Pausch, TOCHI 2000]

Difficulty of use

Sophistication of what can be created

- Client-side
- Server-side
- Balsamiq, Sketch 3, proto.io
- Web
- C++
Design tools
Goal: facilitate rapid iteration

- Prototypes enable exploration and iteration around concrete artifacts
- The more fluid the prototyping process is, the more you can learn before you sink time into engineering
Sketch the interaction to produce working systems

- SILK [Landay, CHI '96]
Sketch the interaction to produce working systems

- Led to: Balsamiq
d.tools: Prototyping Physical Computing Experiences

- How might we prototype an iPhone in thirty minutes?
 - Plug-and-play sensors
 - Statechart authoring for logic
 - Runtime visualization of user states
Closed-loop parameter tuning

- Juxtapose
 [Hartmann et al., UIST 2009]
Closed-loop parameter tuning

- Juxtapose [Hartmann et al., UIST 2009]
Closed-loop parameter tuning

- Led to: Inventing on Principle [Victor 2012]
Design process
Improve the process, improve the output.

- The design process we teach in human-computer interaction need not be fixed!
- Many techniques we use today were once prototyped in research labs.
Wizard-of-Oz Prototypes

• An iterative design methodology for user-friendly natural language office information applications [Kelley, TOIS ’84]

• “Central to the methodology is an experimental simulation which I call the OZ paradigm, in which experimental participants are given the impression that they are interacting with a program that understands English as well as another human would.”
Iterate on a design, or create parallel alternatives?

[Dow et al., TOCHI 2010]

- Feedback on five iterations or five parallel alternatives
- Quality measured via ad clickthrough
- Designs generated in parallel condition had ~1/3 more clicks
Participatory Design

[Schuler and Namioka ’93]

- Developed in Scandinavia, and later ported to the United States design tradition
- Involve the eventual users deeply in the design process
 - Initial exploration
 - Problem definition
 - Develop and focus ideas
 - Evaluation
Quantifying Visual Preferences
[Reinecke and Gajos CHI 2014]

- LabInTheWild data via a quiz about which web sites you like
(End-user) programming
Garbage in, garbage out

- The quality of the interactive systems we build depends on the tools we have at our disposal
- Toolkits and software engineering UIs…
 - Make programming easier to learn and debug, more powerful and more natural
- End-user programming…
 - Make programming more accessible to non-engineers
Programming toolkits

• Seek to understand programmers’ mental model and task goals
• Then, design better support!
• D3: Data-Driven Documents
 [Bostock, Ogievetsky and Heer, Visweek ’11]
Software engineering interfaces

- Augment the development environment rather than the programming language
- Programmers often ask ‘why?’ questions of their programs. Could we support this directly?
 [Ko and Myers, CHI ‘08]
End-user programming

- Lower the threshold to writing programs
- Allow users with little programming skill to author behaviors
 - e.g., Chickenfoot [Bolin et al., UIST 2008]

```javascript
isbn = find('number just after isbn')
with (fetch('libraries.mit.edu')) {
    pick('Keywords');
    enter(isbn)
    click('Search')
    link = find('link just after Location')
}
// back to Amazon
if (link.hasMatch) {
    insert(before('first rule after "Buying"'),
    link.html)
}
```
Programming by demonstration

- Induce a program behind the scenes
- EAGER [Cypher, CHI '91]
Getting the Right Design and Getting the Design Right

• What?
 • Showing users multiple versions of an interface produces more honest and more critical feedback

• Why?
 • It asks, how might we adapt the design thinking process to be more effective?
Webzeitgeist

• What?
 • Mine not the function but the form of designs around the web, and give the analytics and insight back to designers

• Why?
 • A vision of a future for data-driven design
Why read these papers?
What’s difficult about design and creation research?

- Design and programming tools:
 - Slight accelerations are easy; larger-scale improvements are not
- Design process:
 - Multidimensional and difficult to measure
What’s exciting about design and creation research?

• Existing creation tools are getting better every day
• The design process is now an accepted practice in industry, but still malleable
• Your contributions are generative: they lead to new designs and programs that others will create tomorrow
Discussion rooms

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Littlefield 107</th>
<th>Littlefield 103</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>b</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>c</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>d</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td>e</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>f</td>
<td>23</td>
<td>14</td>
</tr>
</tbody>
</table>